The Polar Fluid Model for Blood Flow through a Tapered Artery with Overlapping Stenosis: Effects of Catheter and Velocity Slip

نویسندگان

  • J. V. Ramana Reddy
  • D. Srikanth
چکیده

The blood flow through an overlapping clogged tapered artery in the presence of catheter is discussed. Since cholesterol deposition is resulting in the stenosis formation, velocity slip at the arterial wall is considered. The equations governing the fluid flow have been solved analytically under the assumption of the mild stenosis. The analysis with respect to various parameters arising out of fluid and geometry considered, on physiological parameters such as impedance and wall shear stress at the maximum height of the stenosis as well as across the entire length of the stenosis has been reported. A table summarizing the locations of extreme heights and the corresponding annular radii is provided. It is observed that the wall shear stress is the same at both the locations corresponding to the maximum height of the stenosis in case of nontapered artery while it varies in case of tapered artery. It is also observed that slip velocity and diverging tapered artery facilitate the fluid flow. Shear stress at the wall is increasing as micropolar parameter is decreasing and the trend is reversed in case of coupling number. The results obtained are validated by comparing them with the experimental and theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)

The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...

متن کامل

A Mathematical Model for Blood Flow Through Narrow Vessels with Mild-Stenosis (RESEARCH NOTE)

In this paper we examine the effect of mild stenosis on blood flow, in an irregular axisymmetric artery with oscillating pressure gradient. The Herschel-Bulkley fluid model has been utilized for this study. The combined influence of an asymmetric shape and surface irregularities of constriction has been explored in this computational study. An extensive quantitative analysis has been performed ...

متن کامل

Suspension model for blood flow through a tapering catheterized inclined artery with asymmetric stenosis

We intend to study a particle fluid suspension model for blood flow through an axially asymmetric but radially symmetric mild stenosis in the annular region of an inclined tapered artery and a co-axial catheter in a suitable flow geometry has been considered to investigate the influence of velocity slip at the stenotic wall as well as hematocrit, shape parameter. The model also includes the tap...

متن کامل

Mathematical modelling of Sisko fluid flow through a stenosed ‎artery

In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015